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Experiments on shock stand-off distance 
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An experimental investigation of the non-equilibrium behaviour of the shock 
stand-off distance ahead of spheres at  low supersonic Mach number is reported. 
An intermittent wind tunnel operating with a reacting gas mixture with one 
non-equilibrium mode is described. A non-equilibrium parameter after Dam- 
kohler is determined for the flow and the experiments cover a range of this 
variable from near-frozen to near-equilibrium states. The shock stand-off 
distance is measured and found to vary as expected between these two bounds 
with a low value at  equilibrium. With all other variables governing shock stand- 
off distance held constant, such measurements can also be used to determine 
the relaxation time of the non-equilibrium mode. 

1. Introduction 
The shock stand-off distance A, in front of a sphere of radius R, is largely a 

function of the density ratio across the shock wave as measured on the stagnation 
streamline (e.g. Hayes & Probstein 1966, p. 284). Consequently, the dimension- 
less ratio AIR is sensitive to Mach number a t  low supersonic speeds, as seen in 
figure 1, and it approaches a constant value for strong shocks in hypersonic flow 
of thermally and calorically perfect gases. However, if processes such as vibra- 
tional excitation, dissociation, chemical reactions and ionization occur in the 
stagnation region, the density ratio between the free stream and the shock layer 
will be affected. Thus, other conditions remaining unchanged, a variation of the 
shock stand-off distance must be expected. The extent of this change owing to the 
vibrational excitation, the degree of dissociation, and the like in the flow field will 
be governed by a non-equilibrium parameter such as that proposed by Damkohler 
(1936) in his dimensional analysis of steady-state chemical flow reactors. Indeed, 
conversely, the stand-off distance may be regarded as a measure of the state of 
the gas in the region between shock and body as originally proposed by Schwartz 
& Eckerman (1956). 

Much theoretical work on supersonic and hypersonic perfect gas flows about 
blunt bodies has been done in recent years. These studies were motivated by the 
practical importance of such flows, as well as by the inherent fundamental interest 
in mixed flow fields (e.g. Hayes & Probstein 1966). The additional complications 
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introduced by including real gas and non-equilibrium effects have, however, 
been tackled less frequently. Included in such theoretical studies relevant to our 
work we find the papers by Freeman (1958), Lick (1960), Hall, Eschenroeder & 
Marrone (1962), Lun’kin & Popov (1966) and Conti (1966).t Relatively few 
experimental results appear to be available on non-equilibrium stand-off 
distance of shock waves and those described in the literature were usually 
obtained in firing ranges. The first experiments of this type utilizing the vibra- 
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FIGURE 1. Dimensionless shock stand-off distance in front of spheres as a function of 
Mach number in a perfect gas with y = 8. Theoretical results: -.- , Moeckel (1949) ; 

, Van Dyke & Gordon (1959). Experimental results: 0 ,  Heberle, Wood & Gooderum 
(1959); 0, Kendall (1959); A ,  Charters & Thomas (Nagamatsu 1949); 0, Puckett & 
Schamberg (Nagamatsu 1949) ; n, Sugimoto (Van Dyke 1958) ; 0, Ladenburg et al. (Van 
Dyke 1958); a, Jenkins, Jenkins & Johnson (1966); , present work. 

tional excitation of chlorine gas as the non-equilibrium mode were presented by 
Schwartz & Eckerman (1956). In  addition, Eckerman (1961) studied oxygen 
dissociation, Lobb (1963) worked with a number of non-equilibrium processes 
in air at  high Mach numbers, and Zienkiewicz & Malloch (1968) provide results 
on vibrational relaxation of carbon dioxide. The experimental work to date 
shows the marked effect of real gas behaviour on stand-off distance clearly. 
However, in experiments with dissociation reactions, it seems that a number of 
physico-chemical processes or flow parameters were varied simultaneously. Such 
effects include Mach number changes and variation of static pressure or reactant 
pressure. It therefore appeared desirable to study experimentally the stand-off 

t For additional papers we refer to the excellent summary by Hall & Treanor (1968). 
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distance of shock waves in front of spheres in terms of a single non-equilibrium 
parameter. 

The dissociation reaction of nitrogen tetroxide carried in inert nitrogen, as 
given by 

was chosen as a model gas mixture to study the non-equilibrium flow. The 
equilibrium properties and the rate constants of the system of equation (1)  are 
known, and several other non-equilibrium flow problems were previously 
explored with this mixture in nozzles and a firing range, as referred to in Wegener, 
Chu & Klikoff (1965). A short-duration, intermittent wind tunnel, in part 
patterned after a device first proposed by Ludwieg (1955,1957), was built for the 
experiments to be discussed here. 

N2 + N204 + N2 + 2NO2, (1)  

2. A non-equilibrium parameter 
Chemists have long employed the intuitive concept of the product of reaction 

velocity and residence time to characterize chemical flow reactors. Porster & 
Geib (1934) f is t  proposed a dimensionless parameter relating flow speed, diffusion 
rate, and the rate of a first-order reaction. The complete analysis of the relevant 
fluid-mechanical, molecular and chemical properties entering such complex 
systems is due to Damkohler (1936), whose first dimensionless parameter gives 
the ratio of a characteristic chemical time to that of a characteristic flow time. 
In  analogy we shall use an inverse expression 

D = Tflow/TcIlem, (2) 

in conformity with Freeman (1958). In  general, we expect thermodynamic 
equilibrium in a flow field with D = 00. Conversely, with D = 0 we have frozen 
flow, i.e. a flow in which the chemical change may be neglected. Between the 
two limits about the value D N 1, we anticipate flow conditions that are governed 
by non-equilibrium effects. 

Equation (2) may be applied to inviscid blunt-body flows at  supersonic speed 
with a single reaction. In  flows with given free-stream conditions we anticipate 
an upper or lower bound of AIR for D = 0 and D = 00 respectively. The pressure 
in the shock region is found to be relatively unaffected by the reaction (Lick 1960, 
figure 7; Conti 1966, figure 3). On the other hand, the temperature in the equi- 
librium shock-layer is lower than that for frozen flow because the chemical (or 
other) excitation processes act as heat sinks. Consequently, the shock-layer 
density with reactions is greater than that for frozen flow, and the shock wave 
is closer to the body. 

Next we express the non-equilibrium parameter, D, given by (2) for flow over 
a sphere, with the reacting gas mixture represented by (1). The characteristic 
flow time, Tflow, may be defined by assuming a linear decrease of the flow velocity 
behind the normal shock, u,, to zero speed at  the stagnation point along the length 
A. This assumption gives a good approximation for perfect gas flow (Kendall 
1959), and reacting flows are not expected to behave significantly differently 
(Lick 1960). We thus have : 

rAOw T A  A/+u,. (3) 
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The reaction of (1) remains frozen across the normal shock so that us may be 
found directly from the Rankine-Hugoniot equations and the known state of 
the free stream. 

A definition of a chemical relaxation time is less straightforward for our 
system. However, the differential equation of the reaction mechanism for (1) is 
known and its rate constants have been measured previously (Carrington & 
Davidson 1953; Wegener 1958). We can therefore express the rate law for (1)  by 

where a is the degree of dissociation of the reactants, defined by 
daldt = L ( P ,  P, 4, (4) 

a WNOz/(WNOz +oNz04), 

with wi as the mass fraction of the ith species. Equation (4) may be integra- 
ted to give the variation of a with time in the non-equilibrium region behind 
the shock wave. Following Freeman (1958), a relaxation time, rg, may con- 
veniently be defined by Tg = t ( 0 . 9 5 ~ ~ )  - t (5) 

giving a time in which a changes from the frozen value behind the shock, as, to 
a value of a that corresponds to 95 % of the new equilibrium value a,. The equi- 
librium value a, is obtained from a solution of the Rankine-Hugoniot equations 
for thermodynamic equilibrium. A typical value of rT for the experiments to be 
discussed later is 10 ps. 

In addition to the relaxation time given by (5), an analytical expression for 
the chemical relaxation time may be defined by use of the well-known equations 
for the propagation of small disturbances in a relaxing flow, linearized about the 
state of equilibrium. Such a relaxation time of the linear theory, r6, was derived 
previously, e.g. equation ( 6 )  of Wegener et al. (1965), for the system of (1) in 
conjunction with the linear form of (4). A t  the conditions behind the shock wave 
we find from the previous work : 

with the enthalpy and density of the flow given by h and p respectively. The 
value iii, refers to the local equilibrium degree of dissociation for conditions 
behind the shock wave. For a given experimental environment, (6) gives a value 
of the relaxation time that is about one-fifth of that found from (5). 

With these definitions established, we may now define the Damkohler, or 
non-equilibrium parameter, from (a) ,  (3), (5) and (6), in two ways: 

or 

Typical experimental values to be shown later apply to 0.1 < 0,. < 5, and 
0.5 < D6 < 25 for the two definitions of chemical relaxation time. The relaxation 
time in (8) is often simpler to compute and therefore this definition of D may be 
preferable. The numerical results based on the linear theory will also characterize 
the time scale of the rate of approach to equilibrium in a situation when only the 
non-linear rate equation (4) is valid (Zeldovich & Raiser 1966, p. 351). The 
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differences of the numerical values of D, and D, arise in part from the arbitrary 
definition of 7, in ( 5 ) .  Any decrease in the fraction of the degree of dissociation of 
ae in the upper integration limit of ( 5 )  will increase the value of 0,. in (7) to bring 
0,. closer to D,. For these reasons no physical significance ought to be attached 
to a particular choice of a chemical relaxation time as long as different experi- 
ments are compared on a consistent basis. 

3. Experiments 
An intermittent supersonic wind tunnel shown schematically in figure 2 was 

built for the experiments. This facility represents a modification of a device 
proposed by Ludwieg (1957). In  our arrangement a cellophane diaphragm similar 

Supply tube Dump tube 

Flow - 
Expansion waves at time t ,  Diaphragm 

Nozzle blocks and 
test section 

Y 
0 

FIGURE 2. Intermittent wind tunnel. Supply tube, 5.3 in. inside diameter and 12 ft. in 
length; dump tube, 3.8 in. inside diameter and 14 ft. in length; two-dimensional nozzle 
with 2 in. x 2 in. throat; ideal testing time 20 ms. 

to that used in shock tubes is located at the nozzle end and a dump tube is con- 
nected to the test section. The pressure or supply tube with the diaphragm in 
place is filled at room temperature with the carefully dried and well-mixed 
reacting gas mixture of (l), at about one atmosphere total pressure, and at a 
known reacting gas mass-fraction wR = w ~ ~ , + w ~ ~ ~ ~ .  The reaction of (1) is 
rapid so that no handling operations disturb the known state of thermodynamic 
equilibrium. The dump tube is evacuated to a lower pressure ( <  0.1 atm), and 
external rupture of the diaphragm initiates the flow process. The ensuing tunnel 
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operation is also shown in figure 2 for the idealized situation of inviscid flow and 
instantaneous diaphragm removal. Left-facing expansion waves travel into the 
supply tube and accelerate the gas mixture toward the nozzle. After choking the 
nozzle throat at conditions determined by the ratio of the cross-sectional areas 
of the throat and the supply tube, the expansion ratio of the expansion fan 
becomes fixed, and steady flow through the nozzle begins. For inviscid flow this 
steady state of constant nozzle supply conditions behind the expansion fan, 
po,  To and wR, persists until the expansion waves reach the nozzle after reflexion 
at the supply tube end. Therefore, the useful testing time is linearly dependent 
on the Length of the pressure tube. The nozzle consists of a converging-diverging 
pair of two-dimensional nozzle blocks. The nozzle is preceded by a transition 
section changing the flow from a circular to a rectangular cross-section. Plane 
walls are faired into a cylindrical throat-section ending with an exit cross-section 
of about 2 x 2 in. at a Mach number of about 1.5 for dry air. Sphere models 
mounted on a sting support can be moved axially to permit a slight Mach 
number variation. The models used were stainless steel ball-bearings of A, A, 
&, &, 6 and 8 in, diameter. After the initial shock system has passed around the 
model and other unsteady effects of about 5 ms duration have ceased, the flow 
becomes steady for about 15 ms. 

Static and supply-pressure measurements with pressure transducers and high- 
speed movies of the flow about the spheres showed that the viscous effects in thc 
supply tube could be disregarded within the measuring accuracy of about 8% 
in pressure. This is in agreement with calculations based on Becker’s (1958) 
analysis of this particular problem. The test-section Reynolds number for the 
experiments was of the order of 105/cm. The corresponding boundary-layer dis- 
placement thickness on the spheres (Schlichting 1960, p. 81) did not exceed 1% 
of the shock stand-off distance for the smallest model. Finally, it  was shown that 
the free-stream conditions were in thermodynamic equilibrium. This was found 
true for the operating conditions quoted, and for reactant concentrations 
0.2 < wR < 0.4. The determination of equilibrium states was made by the 
application of a simplified sudden-freezing analysis (Bray 1959) previously 
tested for this system (Wegener 1960). 

Experimentally, we deal with a non-dimensional stand-off distance function 

(9) 

In (9) the free-stream conditions are denoted by the subscript a, with wR = con- 
stant throughout. The Mach number is defined by M, = u,/a,,where a, is the 
free-stream, frozen sound speed. The Damkohler parameter, D, is given by ( 7 )  
or (8). We see from (9) that the stand-off distance depends on four variables, and 
to study the effect of D on the stand-off distance only, M,, wR and a, must be 
held constant. The variation of D, with the other parameters held constant, may 
be readily accomplished by varying the characteristic flow time of (3) by the 
use of spheres with different radii, R. We note that the absolute value of wR 
governs the properties of the mixture. In addition, the amount of heat absorbed 
by the reaction to change the state of the flow from a, to a = 0*95a, is determined 
by w, for a fixed D Primarily for this reason there is a dependence of AIR on o, 

AIR = A/R(Mm, wR, a m ,  D). 
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even for equilibrium flow (0 = co). Practical problems such as this often make a 
separation of variables difficult. For example, in experiments conducted in 
firing ranges the Mach number is usually changed in order to induce different 
degrees of dissociation in the shock layer. Returning to our experiments, it is 
finally needed to measure A for a number of spheres of different R exposed to a 
fixed free stream. 

Typical initial filling conditions for the pressure tube are 300"K, 900 TOIT, 
wR = 0.20, and a = 0.50. After diaphragm rupture, the steady-state nozzle 
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FIQURE 4. Dimensionless shock stand-off distance as a function of the Damkohler para- 
meter, D,, for M ,  = 1.37, w R  = 0.216 and a, = 0.140. 

supply conditions behind the expansion fan are 29OoK, 750 Torr, and a = 0.45. 
The resulting equilibrium free-stream conditions are M, = 1.4, T, = 250 OK, 

p m  = 240 Torr, a = 0.15, and p, = 5 x 10-4g Spheres of different sizes are 
photographed about 10 ms after the start of steady nozzle flow. Shadowgraphs 
are obtained in parallel light of about 0.5 ps duration. A Leica camera with a 
f: 4.5, 135 mm lens using Kodak Tri-X Pan film is focused on a plane removed 
by 0.2 mm from the centreline of the test section. Only a small portion of the 
bow shock wave is in focus permitting a well-defined measurement of h on 
photographs such as the one shown in figure 3, plate 1. (The spots seen in this 
figure result from the presence of small air bubbles in the lens which was used to 
produce the parallel light.) The narrow white zone surrounding the black image 
of the sphere is also visible on 'no flow) pictures. 
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Measurements of the stand-off distance are taken directly from negatives with 
a travelling microscope at  a 60 ; 1 magnification. A reference line shown on the 
photograph indicates the flow direction. The distance of the centre of the apparent 
shock wave to the stagnation point is read. For flows with dry nitrogen, typical 
values of AIR = 0.628 and AIR = 0.614 are found for & and 8 in. spheres 
respectively at  M, = 1.4. The scatter in AIR found by repeated measurements is 
about f 2 % for the smallest sphere and it is about one-tenth of this value for the 
largest one. The spheres of different radii were mounted in the test section in 
such a way that their bow shock appeared at  the same location. The apparent 
2.5 % increase of the mean values of AIR from the largest to the smallest sphere 
is primarily caused by the slightly non-uniform flow in the wedge-type nozzle 
with a Mach number gradient of about AMlAx = 1.5 x cm-l at  the model 
location. 

Typical results such as those shown in figure 4 for fixed free-stream conditions 
may be found as discussed. The error bars indicate the experimentaluncertainties. 
The greatest error stems from the reading of the stand-off distance. Therefore 
the results for the small spheres at  the low values of the Damkohler parameter 
show the longest error bars. On figure 4 we also show estimated values of 0, = 0 
and D, = 00. These bounds were obtained from an empirical correlation of 
AIR (ps/pm) for flow about spheres in perfect gases given by Ambrosio & Wortman 
(1962). In such a form, the stand-off distance is not strongly dependent on the 
physical properties of the gas. After computing the density ratio for frozen and 
equilibrium flow across normal shocks, the corresponding stand-off distance 
values were obtained from the cited empirical formula. 

4. Results and discussion 
Since AIR for blunt bodies is highly sensitive to Mach number changes at low 

supersonic speeds we first compare our results obtained with dry nitrogen with 
others found in the literature. Figure I reveals a surprising scatter of the data of 
various experiments. This state of affairs is at  least partially due to the many 
different experimental techniques employed. Our results fit well and they seem 
to be little affected by the slight Mach number gradient in the nozzle. Qualita- 
tively, the non-equilibrium process can be seen directly in figure 3, plate 1, by 
observing the relative shading of the photograph in the shock layer. The nitrogen 
dioxide (NO,) is brown and absorbs in the visible light region while N,O, and N, 
are clear. Although there is a density increase of NO, and consequently a con- 
centration increase across the weak (low Mach number) frozen shock, the pro- 
nounced darkening visible in figure 3 occurs only somo distance downstream 
from the shock. This distance corresponds to a relaxation length, related to 
7,uS or i-+us, past which the dissociation of N,O, becomes noticeable in a marked 
increase of the NO, concentration. The recombination reaction, 2 N 0 ,  --f N,O,, 
sets in farther down in the expansion regions about the sphere and this effect 
leads to a return of the lighter shade. Also seen in the photograph is the out- 
of-focus interaction of the bow shock wave and the boundary layers on the 
sidewall. 
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The h a 1  result of this work is presented in figure 5. The error bars of figure 4 
have been omitted and each point represents a direct AIR measurement in an 
environment whose properties were determined as shown before. The trend of 
the results between the two limits is found to be as expected by Freeman (1958). 
This is not surprising because our gas mixture lends itself to a description in 
terms of Lighthill’s ideal dissociating gas (Lighthill 1957) as adapted to non- 
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FIGURE 5.  Dimensionless shock stand-off distance as a function of the Damkohler para- 
meter, D,, for: 0 ,  M ,  = 1.37, OR = 0.216, a ,  = 0.140; 0 ,  M ,  = 1.36, 
a ,  = 0.151; A, M ,  = 1.36, wR = 0.400, aoo = 0.178. 

= 0.301, 

equilibrium flow by Freeman. We observe a rapid drop of AIR at  low values of 
D, followed by a more gradual approach to the limiting value at  D, = a. We 
note that changes of wR by about a factor of two do not lead to substantially 
different dimensionless stand-off distance values. Much of the effect of the higher 
reactant concentration is, of course, already implicit in the calculation of 0,. The 
results shown in figure 5 are similar to those calculated for the non-equilibrium 
parameter D, given by (3), (6) and (8). For fixed AIR we simply find D - 5Dr. 

The results shown in figure 5 may be compared more directly with the available 
theoretical work by the introduction of a normalized stand-off distance para- 

+: 

- 

meter.? We can write A-  Ae a=- 
AI-Ae’ 

7 The comparison that follows was suggested to  the authors by a reviewer of this paper. 
We are most grateful for this proposal. 
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where the subscripts e and f again denote the equilibrium and frozen stand-off 
distance values respectively. Next we compute 6(D,) for the experiments shown 
in figure 5.  A similar calculation may be made for the theoretical results of 
Freeman (1958) and Conti (1966). For fixed values of 6, we can then plot the 
different non-equilibrium parameters with respect to each other. It is found that 
the results lie approximately on straight lines, suggesting that a fixed factor 
relates the widely different relaxation parameters to each other. This procedure 
avoids the cumbersome direct calculation of our results in terms of the relaxa- 
tion parameters used by different authors. The solid curve shown in figure 5 
closely represents the theoretical work cited and related to our experiments by 
the above procedure. There is some scatter at the lowest values of Dr < 1 where 
our results are least reliable. 

Finally, the results in figure 5 are in reasonable agreement with a similar 
function proposed for vibrational relaxation (Blythe 1963) by Hayes & Probstein 
(1966, p. 385). This procedure finally lends itself to reversal in order to find 
the relaxation time of a single non-equilibrium mode from the variation of the 
measured stand-off distance. However, owing to the sensitivity of results 
obtained with (10) to the exact knowledge of the bounding A/R-values, care 
needs to be exercised in the application of the comparison. 

Discussions with our colleague Dr Boa-Teh Chu are gratefully acknowledged. 
The work described was sponsored by the Arnold Engineering Development 
Center, Air Force Systems command, U.S.A.F. 
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FIGURE 3. Sharp-focus shadowgraph of the non-equilibrium flow field about a 4 in. 
diameter sphere a t  M ,  = 1.3G, wR = 0.3 and a ,  = 0.15. Flow from left to right. 




